
 1

 Monitoring Data Archives for Grid Environments

Jason Lee, Dan Gunter, Martin Stoufer, Brian Tierney
Lawrence Berkeley National Laboratory

Abstract

Developers and users of high-performance distributed systems often observe performance problems such as unexpect-
edly low throughput or high latency. To determine the source of these performance problems, detailed end-to-end
monitoring data from applications, networks, operating systems, and hardware must be correlated across time and
space. Researchers need to be able to view and compare this very detailed monitoring data from a variety of angles. To
solve this problem, we propose a relational monitoring data archive that is designed to efficiently handle high-volume
streams of monitoring data. In this paper we present an instrumentation and event archive service that can be used to
collect and aggregate detailed end-to-end monitoring information from distributed applications. We also show how the
archive fits into the Global Grid Forum’s “Grid Monitoring Architecture”.

1.0  Introduction
Developers and users of high-performance distributed systems often observe unexpected performance problems. It

can be difficult to track down the cause of these performance problems because of the complex and often indirect interac-
tions between the many distributed system components. Bottlenecks can occur in any of the components through which
the data flows: the applications, the operating systems, the device drivers, the network interfaces, and/or in network hard-
ware such as switches and routers. 

In previous work we have shown that detailed application monitoring is extremely useful for both performance anal-
ysis and application debugging [25][2][24]. Consider the use-case of monitoring some of the High Energy Physics (HEP)
Grid projects [16][11][7] in a Data Grid environment. These projects, which will handle hundreds of terabytes of data,
require detailed instrumentation data to understand and optimize their data transfers. For example, the user of a Grid File
Replication service [3][27] notices that generating new replicas is taking much longer than it did last week. The user has
no idea why performance has changed -- is it the network, disk, end host, GridFTP server, GridFTP client, or some other
Grid middleware such as the authentication or authorization system? 

To determine what changed, one needs to analyze monitoring data from hosts (CPU, memory, disk), networks (band-
width, latency, route), and the FTP client and server programs. In addition to recent measurements, recent historical data
(e.g.: two or three weeks) are needed to establish a performance baseline. Only with this context can one begin to under-
stand the current data. The user needs a way to mine this large historical dataset to extract only data relevant to their per-
formance problem. Current performance can then be analyzed and compared against a baseline drawn from previously
archived information. 

A relational database that supports SQL [20] is an excellent tool for this type of task. SQL provides a general and
powerful language for extracting data. For example, with SQL we can do queries such as: 

• find the average throughput for the past 100 runs

• return all events for application runs that coincided with reports of network errors

• return all events for application runs where the throughput dropped below 10 Mbits/sec and CPU load was over 
90%

• return all host and network events during application runs that took over 30 minutes

• return all events for application runs that failed (reported an error or never completed) during the last week

• return all events for applications runs where the total execution time was more than 50% from the average time for 
the past month

Over the past two years the Global Grid Forum’s Grid Performance Working Group [10] has worked to define the
“Grid Monitoring Architecture” (GMA) [23], which describes the major components of a Grid monitoring system and
their essential interactions. In this paper we show how the archive uses the GMA “producer” and “consumer” interfaces.

 We also address the scalability issues inherent to aggregating monitoring data in a central archiving component. The
archive must be able to easily handle high-speed bursts of instrumentation results, in order to avoid become a bottleneck
precisely when the system is most loaded. 
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2.0  Related Work
There are several application monitoring systems, such as Pablo [17], AIMS [28], and Paradyn [14]. However these

systems do not contain archival components. One of the first papers to discuss the use of relational databases for applica-
tion monitoring was by Snodgrass [19], who developed a relational approach to monitoring complex systems by storing
the information processed by a monitor into a historical database. The Global Grid Forum Relational Database Informa-
tion Services research group is advocating the use of relational models for storing monitoring data, and this group has pro-
duced a number of documents, such as [4][8] and [6]. 

A current project that includes a monitoring archive is the Prophesy performance database [26]. Prophesy collects
detailed pre-defined monitoring information at a function call level. The data is summarized in memory and sent to the
archive when the program completes. In contrast, our system for analyzing distributed applications, called NetLogger (and
described below), provides a toolkit for user-defined instrumentation at arbitrary granularity. Typically this generates far
too much data to hold in memory, so the data must be streamed to a file or socket. This means that our archive architecture
must handle much more data that the Prophesy system. In addition, Prophesy includes modeling and prediction compo-
nents, where our system does not.

The Network Weather Service team is currently adding an archive to their system, and the data model we are using,
described below, is derived from the NWS data model described in [21]. There are several other monitoring systems that
are based on the Global Grid Forum’s GMA, including CODE [18] and R-GMA [9]. R-GMA contains an archive compo-
nent, but does not appear to be designed to handle large amounts of application monitoring data. Spitfire [13] is a web ser-
vice front-end to relational databases, which could potentially be used for an event archive.

3.0  Monitoring Components
The system described in this paper has four main monitoring components: the application instrumentation, which

produces the monitoring data; the monitoring activation service, which triggers instrumentation, collects the events, and
sends them to the requested destinations; the monitoring event receiver, which consumes the monitoring data and converts
the events to SQL records and writes them to a disk buffer; and the archive feeder, which loads the SQL records into an
event archive database. These components are illustrated in Figure1. A previous paper focused on the first two compo-
nents [12], while in this paper, we focus on the last two components. 

In order for a monitoring system to be scalable and capable of handling large amounts of application monitoring
event, none of the components can cause the pipeline to “block” while processing the data, as this could cause the applica-
tion to block while trying to send the monitoring to the next component. In general we have found that performance anal-
ysis of distributed systems requires the generation of monitoring events before and after every I/O operation. This can
generate huge amounts of monitoring data, and great care must be taken to deal with this data in an efficient and unobtru-
sive manner. Depending on the execution environment, potential bottlenecks exist on the network from the producer to
consumer, and inserting events into the event archive database. To avoid blocking, the system must impedance-match
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slow data “sinks” with fast data “sources” by buffering data to disk at all bottleneck locations, as shown in Figure 1. This
is similar to the approach taken by the Kangaroo system for copying data files [22].

Of course, if the sustained data rate exceeds the maximum speed of the slowest component (e.g.: the network or data-
base loading), then the disk buffers will eventually fill and the pipeline will block. However, in many application debug-
ging and tuning scenarios, high monitoring data rates come in bursts , for example for the duration of a file transfer or the
run of a single set of parameters, between which there is only low-frequency “background” monitoring such as CPU or
network probes. In this environment, the slower components will not block the pipeline, but only add some latency as the
data waits in a buffer for processing. 

4.0  Previous Work
We now briefly described two previous components that this system is built upon, NetLogger and GMA.

4.1  NetLogger Toolkit
At Lawrence Berkeley National Lab we have developed the NetLogger Toolkit [25], which is designed to monitor,

under actual operating conditions, the behavior of all the elements of the application-to-application communication path
in order to determine exactly where time is spent within a complex system. Using NetLogger, distributed application com-
ponents are modified to produce timestamped logs of “interesting” events at all the critical points of the distributed sys-
tem. Events from each component are correlated, which allows one to characterize the performance of all aspects of the
system and network in detail.

All the tools in the NetLogger Toolkit share a common log format, and assume the existence of accurate and synchro-
nized system clocks. The NetLogger Toolkit itself consists of four components: an API and library of functions to sim-
plify the generation of application-level event logs, a set of tools for collecting and sorting log files, an event archive
system, and a tool for visualization and analysis of the log files. In order to instrument an application to produce event
logs, the application developer inserts calls to the NetLogger API at all the critical points in the code, then links the appli-
cation with the NetLogger library. All the tools in the NetLogger Toolkit share a common log format, and assume the
existence of accurate and synchronized system clocks. We have found that for this type of distributed systems analysis,
clock synchronization of 1 millisecond is required, and that the NTP [15] tools that ship with most Unix systems (e.g.:
ntpd) can easily provide this level of synchronization. 

We have found exploratory, visual analysis of the log
event data to be the most useful means of determining the
causes of performance anomalies. The NetLogger Visualiza-
tion tool, nlv, has been developed to provide a flexible and
interactive graphical representation of system-level and
application-level events. 

Figure2 shows sample nlv results, using a remote data
copy application. The events being monitored are shown on
the Y axis, and time is on the X axis. CPU and TCP Retrans-
mission data are logged along with application events. Each
lifeline represents one block of data, and one can easily see
that occasionally a large amount of time is spent between
Server_Send_Start and Client_Read_Start, which is the net-
work data transfer time. From this plot it is easy to see that
these delays are due to TCP retransmission errors on the net-
work.

We recently added to NetLogger an efficient self describing binary wire format, capable of generating 615,000 events
per second [12]. This means that we can generate over 6000 events per second with only a 1 percent perturbation of the
application. 

NetLogger’s ability to correlate detailed application instrumentation data with host and network monitoring data has
proven to be a very useful tuning and debugging technique for distributed application developers.

4.2   Grid Monitoring Architecture (GMA)
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Figure 2: Sample NetLogger Results
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We have helped lead a Global Grid Forum (GGF) effort to defined a highly scalable architecture for Grid monitoring,
called the Grid Monitoring Architecture, or GMA. This work has taken place in the GGF Performance and Information
Area, which also has groups working to standardize the protocols and architectures for the management of a wide range of
Grid monitoring information, including network monitoring.

The prime motivation of the GMA is the need to scalably handle dynamic performance information. In some models,
such as the CORBA Event Service [5], all communication flows through a central component, which represents a poten-
tial bottleneck in distributed wide-area environments. In contrast, GMA performance monitoring data travels directly
from the producers of the data to the consumers of the data. In this way, individual producer/consumer pairs can do
“impedance matching” based on negotiated requirements, and the amount of data flowing through the system can be con-
trolled in a precise and localized fashion. The design also allows for replication and reduction of event data at intermediate
components acting as caches or filters. 

In the GMA, the basic unit of monitoring data is called an event. An event is a named, timestamped, structure that
may contain one or more items of data. This data may relate to one or more resources such as memory usage or network
usage, or application-specific types of data like the amount of time it took to multiply two matrices. The component that
makes the event data available is called a producer, and a component that requests or accepts event data is called a con-
sumer . A directory service is used to publish what event data is available and which producer to contact to request it.

The GMA architecture supports both a subscription model
and a request/response model. In the former case, event data is
streamed over a persistent “channel” that is established with an
initial request. In the latter case, one item of event data is
returned per request. 

The GMA architecture has only three components: the pro-
ducer, consumer, and directory service. This means that only
three interfaces are needed to provide interoperability, as illus-
trated in Figure3. 

The directory service  contains only metadata about the per-
formance events, and a mapping to their associated producers or
consumers. In order to deliver high volumes of data and scale to
many producers and consumers, the directory service is not
responsible for the storage of event data itself. 

A consumer is any program that requests and/or receives
event data from a producer. In order to find a producer that provides desired events, the consumer can search the directory
service. A consumer which passively accepts event data from a producer may register itself, and what events it is willing
to accept, in the directory service.

A producer is an program that responds to consumer requests and/or sends event data to a consumer. A producer that
accepts requests for event data will register itself and the events it is willing to provide in the directory service. In order to
find a consumer that will accept events that it wishes to send, a producer can search the directory service.

5.0  Monitoring Event Receiver and Archive Feeder
The monitoring event receiver, shown in Figure1, reads monitoring events from the network, parses the events into a

format that can be directly loaded into the database, and writes them to disk. The archive feeder then periodically loads
the disk files into the database.

The database queries suffer performance degradation while new data is being loaded. Therefore, the feeder is paced
to avoid locking out interactive queries during continual LOAD commands. This pacing can be configured to partially
control the balance between load rate and query responsiveness.

The other control we have over the load rate vs. responsiveness trade-off is the size of the disk files. The monitoring
event receiver creates disk files containing a pre-defined number of events. The larger the file, the longer the database will
be busy (and the host CPU will be near 100% utilization) for each LOAD command. We ran a series of tests to determine
the optimal size for the files, and found that the load rate is fairly constant for files with between 500 and 25,000 events.
For the database we are using (mySQL), we have found that loading about 5000 events at a time maintains a good balance
between storing sufficient data in a timely manner, while using the database is efficiently as possible.
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 Even with the incoming data reduced to a trickle, the database will not be able to execute SQL queries efficiently if
the data model is inappropriate (or poorly implemented in the database tables). Our data model, described next, is simple
but also performs well for common types of queries.

6.0  Data Model and Data Archive
Our data model, shown in Figure4, is based on

NWS archive work [21]. It is very simple: we
describe each event with a name, timestamp, “main”
value, “target”, program name, and a variable number
of “secondary” string or numeric values. The target
consists of a source and destination IP address,
although the destination address may be NULL.
There is a many-to-one relationship from events to
event types, and events to event targets. Therefore
these entities can be put into separate indexed tables
to allow fast mapping and searching of events.
Figure5 shows sample events for TCP throughput
(from iperf) and application monitoring (from a Grid-
FTP server) represented in this model.

We have optimized the actual database tables somewhat from the general model described above, both for database
size and speed. These optimizations are based on common-sense and an intuition of the most frequent types of queries.
For example, the “secondary” values are subdivided into two tables, one for strings and one for numbers, because storing
both in the same table would waste space and slow down indexing. We are also using the event timestamp as the primary
database index, permitting quick access to ranges of dates. 

7.0  Use of GMA
The GMA provides a common framework for structuring the interactions between the user and the activation service,

event receiver, and archive service components. In GMA terms, the activation service is a producer, the event receiver is a
consumer, and the archive service is a producer. When requesting activation from the activation service, or querying the
archive service, the user takes the GMA role of a consumer.

To illustrate this, consider the process of sending results for a file transfer to the archive and then, some time after the
transfer has finished, making a query to the archive that will use those results. To begin with, the user subscribes to the
activation service, indicating that results should be sent not back to itself, but instead to the event receiver. The user is a
consumer  asking for events from the activation service producer , and directing the results to the event receiver consumer .
If all goes well, the activation service will send monitoring data to the event receiver, and from there the data will move
into the event archive. Either the user will know where the event archive is, or the event archive can be intelligent and reg-
ister that it has events for this file transfer in a directory service that the user can search. Either way, the user will then
contact the event archive directly, again acting as a consumer  asking a producer for events. This time, the user may query
the event archive, embedding for example some SQL statements into the request, and receive their desired information as
a response.

Using the GMA interfaces, we can provide a coherent framework for the series of interactions necessary to activate,
archive, and retrieve event data.
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Figure 4: Event data model
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8.0  Sample Results 
The following description demonstrates the power

of SQL for analyzing monitoring data. Consider the
case of unexplained periodic dips in network through-
put. To understand the cause, we construct a query to
find all events that happened during any time when the
network throughput was below 1/5 of the average on
that path. This query is simply a matter of extracting
links with bandwidth measurements, which are already
defined by a type “bandwidth” in the database. Then in
SQL, using the AVG() command, we compute across
these links the average of all the ‘bandwidth’ events.
This now forms a baseline for link bandwidth. SQL can
now supply us with all of the dips in the bandwidth over
the time period of interest by performing a comparison
of bandwidth values against this baseline. Finally, we
extract all events within 1 minute of one of these band-
width dips on both the sending and receiving hosts. 

The results of these queries are graphed with nlv, the NetLogger analysis tool, shown in Figure6.This query took
only 2.2 seconds to execute on a database with one million events. We have also developed a web browser interface to the
archive that facilitates the selection of events, and allows one to send the results to a file or to the nlv analysis tool.

The final version of this paper will include more sample queries, results, and performance data on how long the que-
ries take. We are currently building up an archive with more data and more types of monitoring sensors, and should be
able to demonstrate much more interesting queries soon.

9.0  Conclusions and Future Work
In this paper we have explained how a relational monitoring event archive is useful for correlating events and track-

ing down performance issues in distributed systems. A relational database with historical data allows for the establishment
of a baseline of performance in a distributed environment, and finding events that deviate from this baseline is then a triv-
ial using SQL queries. For the final version of this paper, we will show this monitoring system in a Grid Testbed (such as
the DOE Science Grid), and give results for analyzing real Grid applications (such as GridFTP).
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